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Abstract. Expressions in the form of operators that enable one to calculate the intensity of 
allowed ( A M  = 1, A m  = 0) and ‘forbidden’ ( A M  = 1, A m  = t l )  hyperfine EPR lines have 
been derived ( M  and m denote, respectively, the electron and nuclear magnetic quantum 
numbers). The spin Hamiltonian considered consists of the electron Zeeman, zero-field and 
hyperfine terms. The axis of quantization for the nuclear spin is assumed to be along the 
direction of the effective magnetic field at the nucleus. The variousspin Hamiltonian ‘tensors’ 
are considered to be anisotropic, having non-coincident principal axes. These operators 
depend only on the components of the spin operators S and I along their respective axes of 
quantization. To calculate the intensity, it is sufficient to determine the square of the matrix 
elements of these operators between the zero-order states that take part in resonance. The 
present results are compared with those published previously. The angular variation in the 
intensity calculated using the present expressions compares favourably with experimental 
values. 

1. Introduction 

The angular variation in the electron paramagnetic resonance (EPR) intensities has been 
interpreted using three different methods depending on the relative strengths of the 
Zeeman, crystal-field and hyperfine terms. If the crystal field is comparable with the 
Zeeman field, then only exact diagonalization of the spin Hamiltonian (SH) will lead to 
correct results. If the crystal field and hyperfine (HF) interactions are small compared 
with the Zeeman term, the correct intensity of the EPR transitions can be obtained using 
perturbation theory and assuming that the axis of quantization for the nuclear spin Z 
remains the same for all the electronic levels involved in the transitions (Abragam and 
Bleaney 1970). In the case of a strong crystal field (but still smaller than the Zeeman 
term) and weak HF interaction compared with the crystal field, Bir (1964) has obtained 
intensity expressions that reproduce experimental results satisfactorily. In this method 
the axis of quantization for the nuclear spin is taken to be along the direction of the 
effective magnetic field associated with the HF interaction and is different for different 
electronic states. The electronic wavefunctions are obtained by applying the per- 
turbation theory to the electronic part of the Hamiltonian and, for each of the electronic 
states thus obtained, the nuclear states are defined. If the crystal field and HF interactions 
are of comparable magnitude, the axis of quantization for the nuclear spin must still be 
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taken along the direction of the effective magnetic field, but the separation of the 
eigenstates into electronic and nuclear parts cannot then be justified and therefore the 
complete SH of the paramagnetic ion must be considered in calculating the EPR line 
intensities (Mialhe and Erbeia 1972). Mialhe (1979) has given a detailed discussion of 
the various approximate methods used in obtaining analytical expressions for the EPR 
line intensities as well as a comparison of these expressions with the experimental results 
on the Mn2+ ion in some crystal fields. 

‘Forbidden’ HF transitions (AM = 1, Am # 0; AM # 1, Am # 0) arise as a result of 
the admixing of various nuclear states corresponding to different m-values (here, M 
and m denote the electron and nuclear magnetic quantum numbers, respectively). 
Comprehensive reviews on the subject of forbidden HF transitions have been recently 
given by Weil(l987) and Misra and Upreti (1987). Expressions in the form of operators 
that permit one to calculate the intensity of allowed (AM = 1, Am = 0) and forbidden 
(AM = 1, Am = - 1) HF transitions have been reported by Mialhe and Erbeia (1973a, b) 
who used them to determine the SH parameters of the Mn2+ ion. It was found that their 
expression for the allowed transition does not simplify to that of Bir (1964) in the absence 
of HF interaction and that considerable differences exist between their expression for 
the forbidden HF transition (AM = 1, Am = -1) and that of Subramanian and Misra 
(1989) and Golding et a1 (1972). It was therefore decided to re-examine the operator 
expressions derived by Mialhe and Erbeia (1973a, b). 

The intensity of a magnetic resonance transition is proportional to the squared 
absolute value of the matrix element of the Hamiltonian describing the interaction 
of the excitation field with the magnetic moment of the electron between the states 
participating in resonance. The wavefunctions involved in the evaluation of the matrix 
elements are the perturbed wavefunctions. The task of calculating the intensity would 
be greatly simplified if one could express the required matrix elements in such a way that 
only the unperturbed wavefunctions are involved. 

It is the purpose of the present paper to derive such ‘operators’ that simplify the 
calculation of the EPR line intensities. These operators take into account the full admix- 
ture of the eigenstates up to second order in perturbation. Following Bir (1964), the axis 
of quantization for the nuclear spin is taken to be along the direction of the effective 
magnetic field at the site of the nucleus, an assumption more realistic than that used 
earlier (Subramanian and Misra 1989). The spin Hamiltonian considered consists of the 
electronic Zeeman, zero-field and HF terms. The intensity can easily be calculated by 
evaluating the matrix elements of these operators, which depend on the components of 
the spin operators S and I ,  between the zero-order eigenvectors of the components of S 
and I along their respective axes of quantization. 

In section 2 we consider the general case where the various SH ‘tensors’ are assumed 
to be anisotropic and have non-coincident principal axes and we obtain the second-order 
perturbed eigenfunctions required for the derivation of the intensity operators. The 
operators for the intensity of the allowed and forbidden HF transitions are obtained in 
section 3 for the case of axial symmetry and coincident SH tensors. Comparison with 
previously published results is made in section 4. An illustrative example is given in 
section 5 .  The results are summarized in section 6. 

2. Spin Hamiltonian 

Consider the following Hamiltonian consisting of the Zeeman, zero-field and HF terms: 
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x = pBsT - g * B~ + ST * D . S  + sT . A  * I .  (1) 

In equation (l), T represen$ the transpose, pB is the Bohr magneton and Bo is the 
external Zeeman field; g, D and A are the electronic g, zero-field and HF 'tensors', 
respectively, and are assumed to be anisotropic and non-coincident, i.e. their principal 
axes are non-collinear. The axis of quantization for the nuclear spin Z is taken to be in 
the direction of the effective magnetic field B e f f ,  which is defined for a given electronic 
state 1 M )  as (Bir 1964) 

( ~ 1 s ~  . A . z I M )  = g r t ~ n ( B e f f * z )  (2) 

where g, and p ,  are the nuclear g-value and nuclear magneton, respectively. The 
eigenstates I M )  are functions that diagonalize the purely electronic part X e  of the 
Hamiltonian (l), i.e. 

x e  = p B ~ T . g . ~ O  + s T * D * s .  (3) 

To find the eigenfunctions I M )  from perturbation theory, one transforms equation (3) 
from the laboratory coordinate system ( x ,  y ,  z )  to a new coordinate system (xl, y l ,  zl) 
in which the electron spin S is quantized along the z1 axis, the unit vector for which is 
defined by 

21 = B ; f  * g/Bog (4) 

g2Bg = B;f * gT * g Bo.  ( 5 )  

X e o  = psgBoSzl  -k i(z*T * 6 ' 21)[3ss1 - s(S + I ) ]  (6) 

where 

It is then possible to rewrite equation (3) as the sum of two terms: a zero-order term 

where 

f l  = if1 - $1 

l1 = f l  + i j l  

S ,  = SX1 rt isy1. 

(8) 

The second-order perturbed wavefunctions IM)  of the Hamiltonian (3) can then be 
written as (Golding 1969) 

where a M k N  are the admixture coefficients and IM 2 N)O are the zero-order eigen- 
functions of equation (6 ) .  
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The effective magnetic field Beff defined by equation (2) and which determines the 
direction of the nuclear axis of quantization in the electronic state IM) can now be 
expressed as 

gnPnBeff,, = (2T * A  * & ) ( ~ I s x l  IM) 
+ ( j q  * A  &)(MISy1 l M )  

+ (e: * A ' &)(MI S,1 I M )  a = x , y , z .  (10) 

This direction, defined by the polar angle cp ' measured from the z axis, for the case of 
axial symmetry in which the principal axes of 6 and A are coincident with the x ,  y ,  z 
axes, is given by (Bir e? a1 1965) 

cos cp'  = ( A / K M ) [ M  cos cp + ( A / G ) { 3 M 2  - S ( S  + 1)) sin q ]  

sin q f  = ( B / K M ) [ M  sin cp - ( A / G ) { 3 M 2  - S ( S  + 1)) cos q ]  

where q is the polar angle of the z1 axis. The remaining constants in equation (11) are 
defined in equation (19). The non-parallelism of the axes of quantization of the electron 
and nuclear spins is most significant for M = +f (Mialhe and Erbeia 1972) 

Having determined the orientation of Beff relative to the laboratory coordinate 
system ( x ,  y ,  z ) ,  the HF interaction can be written as 

(11) 

S T  * A - z = [S , ,  (a: * A * $2)  + Syl ( j q  * A * R 2 )  + SZl (2: * A * a,)]z , ,  
+ [S,,(ff * A * . p 2 )  +SYl(jq e A . 9 2 )  + S , , ( 2 T . A . j Q ] Z y 2  

+ [S,,(iT A * 22) + S , , ( j q  * A * 22) + S,,(2T * A * 22)]Zz2. 

22 = Beff/l Beff I 

(12) 

In equation (12), the unit vector t2 is defined by 

( 1 3 )  

and determines the axis of quantization for the nuclear spin Z; the axes x 2 ,  y 2  are 
unspecified. 

Using equations (6), (7)  and (12) the spin Hamiltonian (1) can be written as 

X = X o + X '  
where 

Xo = pBgB&,l 4- h(2: * 6 - 21)[3S:1 - s(s f I ) ]  + (2: * A * 22)Sz l l r2  

X f  = f[(rT - D * 2,)(S+S,1 + S,IS+) + (ZT * D -2 , ) (S -S , ,  + S , , S - ) ]  

(14) 
and 

+ t[(rT * D * rl)S: + (IT ' D - Z1)S2 + S+Z+(rT A * r2) 

+ t { S , ,  [(fT * A * 1 2 ) Z -  + (2; ' A ' r2)Z+] 

+ S+Z-(rT . A . Z 2 )  + S-Z+(ZT * A * T ~ )  + S-Z-(ZT . A * Z 2 ) ]  
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where 

r2 = f2 - i j2  

l2 = f2 + is2 

I, = ZX2 -+ iIy2. 

3. Intensity operator 

Operator expressions that enable one to evaluate the intensities of the EPRHF transitions 
AM = 1 ,  Am = 0, +1 will now be derived for the case where the excitation field B1 is 
perpendicular to the Zeeman field Bo. In order to compare the prese_nt results with those 
of Mialhe and Erbeia (1973a, b), it will be assumed that the g, D and A tensors are 
axial and that their principal axes coincide with the laboratory axes x ,  y ,  z .  The spin 
Hamiltonian (equations (14 )  and ( 1 5 ) )  then simplifies to 

2 0  = p&dZ1 + W t l  - S(S + I ) ] +  K0Sz11z2 

X ’  = - (A/2)(S+Sz1 + S,,S+ + S-S ,1  + SzlS-) + p(S: + S2) 

+ S1(I+ + I-) - P ( S +  + S-)I,2 

+ Q(S+Z.+ + S-I-) + R(S+Z- + S-Z+) 

(17) 

(18) 
with 

G =  (D/6) (3  COS’ rp - 1 )  

A = D sin rp cos QI 

p = (D/4 )  sin2 rp 

P = [ ( A 2  - B2)/2K]  sin rp cos rp 

+ (A/2GKM)(A2 sin2 rp + B2 cos’ rp) [3M2 - S(S + l ) ]  

S1 = (AAB/2GK)[3M2 - S(S + l)] 

Q = (B/4) (A/K - 1 )  
R = (B/4) (A/K + 1) 

KO = K + [ ( A 2  - B 2 ) / K M ] ( D / G )  sin2 rp cos2 rp[3M2 - S(S + l ) ]  

g 2 K 2  = giA2 cos2 6 + g: B2 sin2 6 

D = $Dzz 
A = A , ,  

B = A,, = A,, 

tan rp = (gJg11) tan 6 

G = PBgBO 
6 is the angle between the Zeeman field Bo and the z principal axis. 
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The spin Hamiltonian given by equations (17) and (18) differs from that of Mialhe 

(i) The coefficients Q and R defined by equation (19) of the present paper are 

(ii) The sign of the coefficient S1 of the present paper is opposite to the coefficient 

The second-order normalized perturbed eigenfunctions of the spin Hamiltonian 

and Erbeia (1972) in two essential respects. 

different from the coefficients derived by Mialhe and Erbeia. 

given by them. 

(equations (17) and (18)) can be written as (Golding 1969): 

I M ,  m) = (1 + ~ M , : ~ > I M ,  m ) ~  + 2' C ~ T N , , , + . ~  I M  * N ,  m * n)O (20) 
N,n  

where N ,  n are positive integers and IM,  m)' are the zero-order wavefunctions of X o  
(equation (17)); a is required for normalization and the c are admixture coefficients. 
The prime on the summation sign indicates that the term with N = n = 0 is to be omitted. 

The intensity I M , m ;  M t , m z  of the magnetic resonance transitions between the perturbed 
states IM ' ,  m') and I M ,  m) is given by (Orton 1968) 

IM.m;M'm'  =y{l(Mr,"lxe.x IM,m)12 (21) 
where 3'C is a constant and 

X e x  = pBST * Q B1 
=pB[l (rT'g 'B1)S+ +i(ZT*Q*B,)S-  + ( i T * Q . B 1 ) S z , ]  (22) 

In equation (22), B1 is the amplitude of the excitation microwave field. 

transitions is that it is possible to express equation (21) in the form 
The basic idea behind the formulation of an operator to evaluate the intensity of EPR 

IM,m;M'm'  = y f I o ( M ' ,  m'lJIM, m)O12 (23) 
where J is the required operator. 

The derivation of the intensity operator J is illustrated below with the help of one 
specific example. To facilitate comparison with previously published results (Mialhe and 
Erbeia 1973a, b, Golding et a1 1972, Subramanian and Misra 1989), it will be assumed 
that Q, D and A have axial symmetry and that the principal axes of D and A coincide with 
the x ,  y ,  z axes. One of the terms appearing in the intensity expression (21) for the 
allowed HF transition M - 1, m t) M ,  m is proportional to 

O((c3;t:;)M + 1, mlS+ 1(1 + a$:; )M,  m)O. 

S O . I C M + I : ~  

SOJ = O(M+ l ,m lS+ lM,m)O= O(M,mlS-IM+ 1,m)O. 

(24) 

(25) 

(26) 

Keeping only terms in 1/G2, this becomes 
M - 1  m 

where 

The admixture coefficient of the state IM - 1, m) with the state IM + 1, m), c t ;  i;;, is 
given in the second-order perturbation approximation as (Golding 1969) 

O(M + 1, m l X ' l M  - 1, m)O 1 
E ' f - 1 , m  - E M + l , m  + E f - 1 , m  - ~ M + l . m  

0 0 

O(M+ l,m~X~~M',m~}OO(M',m~~X'~M- 1,m)O 

C M - l m  = 
M + l : m  

E f - 1 , m  - E f ' , m '  
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11 - O(M+ 1,mlX' lM- l,m)OO(M- 1,mlX' lM- 1,m)O 
E f - 1 , m  - E f + l , m  

- - I  -- 
- (  2G 8G2 

x [O(M+ 1,m1(2S2 - l)S+IM,m)O 

X O ( M ,  ml(2S, - 1)S+ lM - 1, m)O]). (27) 

Using equations (27) and (26), equation (25) can be written as 

-(p/2G)O(M, m / S -  lM + 1, m)O0(M + 1, mlS: IM - 1, m)O + (A2/8G2) 

x O(M, mlS- IM + 1, m)OO(M + 1, m((2S, - l)S+IM, m)O 

x O(M, m I (2S, - l)S+ IM - 1, m)O 

x S-(2S, - 1)S-(2S2 - l)S+]lM, m y .  

= ' ( M  - 1, ml[-(p/2G)StS+ + (A2/8G2) 

(28) 

The required operator is then given by 

(30) C M - 1 . m  M + l , , ,  - - - (p/2G)S?S+ + (A2/8G2)S-(2S, - 1)S-(2SZ - l )S+.  

Operator expressions thus obtained for the allowed ( A M  = 1, Am = 0) and forbidden 
( A M  = 1, Am = +1) HF transitions are given below. 

For the transition M - 1, m - M ,  m ( A M  = 1, Am = 0), 

J = (1 + ( p / ~ ) ( 2 ~ ,  - 1) + ( ~ 2 ~ 2 ~ 2 / 2 ~ 2 ~ 4 ) [ ~ ; 1 ( ~ ,  - i)-1(3~; - ~ 2 )  

x (3s: - 6S, - S 2  + 3)](Z2 - I$) - (A2A2B2/4G2K4) 

X [S;2(3S; - S2)' + ( S ,  - 1)-2(3S$ - 6 S ,  - S2 + 3)2](Z2 - Z$) 
- (A2/G2)(S2 + 3s; - 3S,) - (p2/G2) 

x ( 3 2  - 3s; + 3S, - Q)}S+ (31) 
For the transition M - 1, m T 1 - M ,  m ( A M  = 1, Am = kl), 

J = k(AAB/2GK2)[S-{[3Sf - S(S + l)]/S,} - {[3S; - S(S + l)]/Sz}S-iZT 

k (ApAB/8G3K){[S(S + 1) - S: - 3S, - 2]S-[3(S2 + 1)2 - S(S + l)] 

+ [3(S2 - 1 ) 2  - S(S + l)]S-[S(S + 1) - s; + 3S, - 2]}Z, 

+(A3A3B3/8G3K6)[{[3S; - S(S + l)]/S2)S-{[3S; - S ( S  + 1)]/Sz}2 

x I, [Z(Z + 1) - Z$] - {[3S? - S(S+ l)]/Sz}2S-{[3S~ - S(S + l)]/S,} 

x [Z(Z + 1) - @]I,] - (QA/G2){S-(2S, - 1) 

x [S(S + 1) - s: + S, - (3 k 2)]}Z, 

- (RA/G2){S42S, - l)[S(S + 1) - s; + S ,  - (3 T 2)]}Z, 
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* (ApAB/2G2K2)I[S- (2S, - 1){[3Sz - S(S + l)]/S,} 
- ips: - S(S + ~)I /S ,}S-(~S,  - i ) p T .  (32) 

In the derivation of equations (31) and (32), terms involving (A - B) /K  were neglected 
as was done by Mialhe and Erbeia (1973a, b). 

4. Comparison with previous results 

The above results for the intensity operator given by equations (31) and (32) are now 
compared with those of Mialhe and Erbeia (1973a, b). It is seen that the present results 
differ from theirs significantly. In the case of the allowed HF transitions ( A M  = 1, Am = 
0), it is noticed that the expression (equation (13)) obtained by Mialhe and Erbeia 
(1973a) does not simplify to that given by Bir (1964) for the case where the minteraction 
is absent, wheras the present result (equation (31)) does. The result derived in the 
present paper (equation (31)) is also in agreement with that of Subramanian and Misra 
(1989). As regards the forbidden HF transition (AM = 1, Am = - 1) the expression given 
by Mialhe and Erbeia (1973b) is quite different from those given by Golding et a1 (1972) 
and Subramanian and Misra (1989). Remarkably, the term (AA/2G2)(2M - 1) 
[S(S + 1) - M 2  + M - 51 found in the above-mentioned references is absent in 
the work of Mialhe and Erbeia (1973b). The expression derived in the present paper 
(equation (32)), on the other hand, is in agreement with the results of Golding et a1 
(1972) and Subramanian and Misra (1989). However, the sign of the term (AA/ 
2G2)(2M - 1) x [S(S + 1) - M 2  + M - 51 in the present paper (equation (32)) is oppo- 
site to the signs given by Golding et a1 and by Subramanian and Misra. The reason for 
this is that these workers used a different direction, namely along the direction of 
BT - g - A, to quantize the nuclear spin; the direction used in the present paper is given 
by equation (13). 

The intensity of the forbidden HF transition AM = 1, Am = +1 has been calculated 
by Subramanian and Misra (1989). The present result (equation (32)) is in agreement 
with their value. 

5. Illustrative example 

The present calculated expression (32) will now be used to compare the intensity of the 
forbidden HF lines with the experimental values. For this, the values of the intensity of 
Mn2+ ion in A1,0, reported by Mialhe and Erbeia (1973b) will be used. In order to 
calculate the intensity theoretically, one needs to know the values of the SH parameters 
D ,  A and B as well as the klystron frequency. The values of D ,  A and B have been 
reported by Mialhe and Erbeia (1973b) from measurements of the EPR line positions to 
be D = 207.4 G ,  A = -85.1 G and B = -83.7 G .  However, the klystron frequency is 
not reported by Mialhe and Erbeia. It had, therefore, to be estimated using a least- 
squares procedure (Misra et a1 1989) and the theoretical (incorrect) expression given by 
Mialhe and Erbeia. The X2-value for the EPR data was defined as x2 = Xi - Zt,,)’ 
where i denotes the number of data points used in the fitting procedure and I,,,, and Ire,, 
respectively, represent the intensities calculated using their theoretical expression and 
the (calculated) values actually reported by them. The best-fit value of the klystron 
frequency was then determined to be 9.62 GHz. This value of the klystron frequency 
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1.6 I 1 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0  

Figure 1. Angular variation in the intensity 
of the forbidden HF transition -4, 
m + 1 e;, m for MnZ+ ions in A1,03: 
c u r v e s a ( m = $ ) , b ( m = & ) a n d c ( m =  -4) 
are based on equation (32) of the present 
paper; curves d ,  e and f are for cor- 
responding m-values according to Mialhe 
and Erbeia (1973b); curve g is form = -4 
as predicted by Bir (1964): 0,  from Mialhe 
and Erbeia. 

along with the values of D ,  A and B reported by Mialhe and Erbeia was then used to 
calculate the intensity theoretically, using equation (32). The angular variation in the 
intensity so calculated is shown in figure 1 for M = t .  

It is seen that the agreement between the intensities calculated using the present 
derived expression and the experimental results of Mialhe and Erbeia is quite good. For 
completeness, the angular variation in the intensity predicted by Mialhe and Erbeia 
(1973b) and Bir (1964) are also shown in the same figure. It is clear that Bir’s expression 
cannot reproduce the data satisfactorily, which shows that the separation of the wave- 
function into electronic and nuclear parts is not valid when the crystal-field and HF 
energies are of the same magnitude. Bir’s expression gives good agreement with exper- 
iment only in the case of crystal-field splitting larger than the HF splitting (Bir et a f  1965, 
Dickey and Drumheller 1964). 

5. Conclusion 

A comparison of the theoretically calculated intensities of forbidden HF transitions with 
the experimental values shows that good agreement is obtained if one considers the 
exact quantization axes for electronic and nuclear spins. Use of the conventional quan- 
tization axis for nuclear spin adopted by Abragam and Bleaney (1970) also gives similar 
results. The advantage of the present method is that only first-order calculations of the 
wavefunctions are needed to get results that the conventional method gives in second 
order. This greatly simplifies the task of evaluating the matrix elements required in the 
computation of the EPR intensities. 

Acknowledgment 

This work was supported by the Canadian DND ARP (grant FUHCF). 



10510 S Subramanian and Cheuk Yin Cheung 

References 

Abragam A and Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (Oxford: Clarendon) 

Bir G L 1964 Sou. Phys.-Solid State 5 1628 
Bir G L, Butikov E I and Sochava L S 1965 Sov. Phys.-Solid State 6 1966 
Dickey D H and Drumheller J E 1964 Phys. Rev.  B 1 3582 
Golding R M 1969 Applied Wave Mechanics (London: Van Nostrand) p 22 
Golding R M, Newman R H, Rae A D and Tennant W C 1972 J .  Chem. Phys. 57 1912 
Mialhe P 1979 Phys. Status Solidi b 93 187 
Mialhe P and Erbeia A 1972 Solid State Commun. 10 1133 
- 1973a Phys. Rev. B 7 4061 
- 1973b J .  Phys. C:  Solid State Phys. 6 1965 
Misra S K, Mbaebie K and Subramanian S 1989 Physica B 154 225 
Misra S K and Upreti G C 1987 Magn. Reson. Rev.  12 1 
Orton J W 1968 Electron Paramagnetic Resonance (London: Iliffe) p 68 
Subramanian S and Misra S K 1989 J .  Phys.: Condens. Matter 19483 
Weil J A 1987 Electronic Magnetic Resonance of the Solid State (Ottawa: Canadian Society for Chemistry) p 1 

p 174 


